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Representing words
Traditional NLP: regard words as discrete symbols 

Such symbols can be represented as one-hot vectors: 

motel = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0] 

hotel  = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0] 

Vector dimension: the number of  words in vocabulary (e.g., 500,000+) 

Problem: For any two different words, their one-hot vectors are 
orthogonal. There is no natural notion of  similarity for one-hot vectors 

How to encode similarity for words, so that we can, for example, match 
documents containing "Lafayette hotel", if  a user searches for "Lafayette 
motel" in the web?



Word vectors (embeddings)

Distributional semantics: A word’s meaning is given by the words 
that frequently appear close-by 

When a word w appears in a text, its context is the set of  words 
that appear nearby (within a fixed-size window) 

We use the many contexts of  w to build up a representation of  w 

More specifically, we will build a dense vector for each word, 
chosen/learned so that it is similar to vectors of  words that 
appear in similar contexts, measuring similarity as the vector dot 
(scalar) product



Word2Vec (Mikolov 
et al., 2013) by 
Google 

GloVe (Pennington et 
al., 2014), Stanford 

Learn numeric 
representation of  the 
meanings of  words

Word vectors (embeddings)



Word2Vec

Continuous Bag of  Words model 
Predict center word  
from context words

Skip-gram model 
Predict context words 

from center word



Word2Vec encodes meaning into vectors, 
but what if  a word has different meaning 

in different sentences? 

The bank of  the river 
vs. 

Money in the bank 



Attention

generate word by word

Learns what words to attend to, 
when generating each word



in theory, given enough compute resources

Transformer



Pretraining
Pretained word embeddings (2017) -> pretrained whole model 

All (or almost all) parameters in NLP networks are initialized via pretraining 

Pretraining methods hide parts of  the input from the model, and train the model to 
reconstruct those parts 

Exceptionally effective at building strong representations of  language, parameter 
initializations for strong NLP models, and probability distributions over language that 
we can sample from



Pretraining and finetuning
 Why should they help, from a “training neural networks” perspective? 

Consider, provides parameters  by approximating .     
(The pretraining loss) 

Then, finetuning approximates , starting at .   (The 
finetuning loss) 

The pretraining may matter because stochastic gradient descent sticks 
(relatively) close to  during finetuning. 

So, maybe the finetuning local minima near  tend to generalize well 

And/or, maybe the gradients of  finetuning loss near  propagate nicely
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Recall: Notable LLMs



Pretraining for 3 types of  architectures
The neural architecture influences the type of  pretraining, 
and natural use cases



Pretraining encoders
What pretraining objectives to use? 

 Idea: replace some fraction of  words in the input with a special [MASK] token; predict these words 

BERT: Bidirectional Encoder Representations from Transformers, Devlin et al., 2018 

Two objectives: Masked language modeling and Next sentence prediction  

Trained on: BooksCorpus (800 million words), English Wikipedia (2,500 million words) 

BERT-base: 12 layers, 768-dim hidden states, 12 attention heads, 110 million params 

BERT-large: 24 layers, 1024-dim hidden states, 16 attention heads, 340 million params



Extensions of  BERT
Some generally accepted improvements to the BERT pretraining formula: 

RoBERTa (Liu et al., 2019): mainly just train BERT for longer and 
remove next sentence prediction 

SpanBERT (Joshi et al., 2020): masking contiguous spans of  words 
makes a harder, more useful pretraining task



Full vs. Parameter-Efficient Finetuning

Prefix-Tuning Low-Rank  
Adaptation



Pretraining encoder-decoders
What pretraining objectives to use? 

 Idea: replace different-length spans from the input with unique placeholders; decode out the spans that 
were removed 

Exploring the Limits of  Transfer Learning with a Unified Text-to-Text Transformer, Raffel et al., 2018 

T5: Text-to-Text Transfer Transformer, 11 Billion parameters 

Pertaining on Colossal Clean Crawled Corpus (C4): start with Common Crawl (over 50TB of  
compressed data, 10B+ web pages), filtered down to ~800GB, or ~160B tokens 

trained with a novel text infilling objective: randomly mask a portion of  contiguous tokens and 
train the model to predict the masked text spans

Pretraining objectiveText-to-text framework



Pretraining decoders
It’s natural to pretrain decoders as language models and then use them as generators 

We can finetune them by training a classifier on the last word’s hidden state 

Improving Language Understanding by Generative Pre-Training, Radford et al., 
2018 

Transformer decoder with 12 layers, 117M parameters 

768-dimensional hidden states, 3072-dimensional feed-forward hidden layers 

Trained on BooksCorpus: over 7000 unique books 

Contains long spans of  contiguous text, for learning long-distance 
dependencies 

The acronym “GPT” never showed up in the original paper; it could stand for 
“Generative PreTraining” or “Generative Pretrained Transformer”



Generative Pretrained Transformer (GPT)
How do we format inputs to our decoder for finetuning tasks? 

Natural Language Inference: Label pairs of  sentences as entailing/
contradictory/neutral 

 

Here’s roughly how the input was formatted, as a sequence of  tokens for the 
decoder. 

 

The linear classifier is applied to the representation of  the [EXTRACT] 
token.



GPT-2
GPT-2, 2019, a larger version (1.5B) of  GPT trained on more data 

Start to achieve strong zero-shot performance



GPT-3

GPT-3 (Brown et al. 2020) 
further scaled the GPT-2 model 
to 175 Billion (100 times larger 
compared to the largest GPT-2 
model), trained on 300B tokens 
of  text. 

Before GPT-3, fine-tuning is the 
default way of  doing learning in 
models like BERT/T5/GPT-2:  

very expensive for the 175B 
GPT-3 model



GPT-3 paradigm shift
GPT-3 proposes an alternative: In-context learning 

Only need to feed a small number of  examples (e.g., 32) 

Just a forward pass, no gradient update at all



GPT-3’s in-context learning



The GPT Lineage

New after GPT-3:  
Training on code,  supervised instruction tuning, and RLHF 

(reinforcement learning from human feedback)



ChatGPT

GPT-3.5 (Nov. 2022) -> GPT-4 (latest)



LMs to assistants
How do we get from language models

to this?



ChatGPT



InstructGPT
Supervised instruction tuning + RLHF

(Ouyang et al., 2022): Training language models to follow instructions with human feedback



Instruction finetuning



Instruction finetuning



Limitations
It’s expensive to collect ground-truth data for tasks. 

Tasks like open-ended creative generation have no right answer. 

E.g., write me a story about a dog and her pet grasshopper. 

Language modeling penalizes all token-level mistakes equally, but 
some errors are worse than others. 

Even with instruction finetuning, there a mismatch between the LM 
objective and the objective of  “satisfy human preferences”. 

Can we explicitly attempt to satisfy human preferences? 

Reinforcement learning from human feedback!



InstructGPT
Supervised instruction tuning + RLHF



InstructGPT
Supervised instruction tuning + RLHF



ChatGPT: InstructGPT + dialogue data

https://openai.com/blog/chatgpt

https://openai.com/blog/chatgpt


Summary



Summary



Summary



Summary



Summary



RLHF Limitations
Collecting human feedback at scale is extremely expensive since 
humans need to be paid 

If  humans are included, one must consider that the quality of  the 
human feedback that can highly influence the model performance 

Chatbots are rewarded to produce responses that seem authoritative 
and helpful, regardless of  truth 

This can result in making up facts + hallucinations 

Human preferences are unreliable 

 “Reward hacking” is a common problem in RL



What’s next?
RLHF is still a very underexplored and fast-moving area 

Scalability: As the process relies on human feedback, developing methods to 
automate or semi-automate the feedback process could help address this issue. 

Ambiguity and subjectivity: Human feedback can be subjective and may 
vary between trainers. This can lead to inconsistencies in the reward signals 
and potentially impact model performance. Developing clearer guidelines and 
consensus-building mechanisms for human trainers may help alleviate this 
problem. 

Long-term value alignment: Ensuring that AI systems remain aligned 
with human values in the long term is a challenge that needs to be addressed. 

…



Lab 8 - preview

Save a copy of  this 
Colab notebook file 
into your google drive: 
File -> Save a copy in 
Drive 

Work on the saved 
copy 

Download this pdf  and 
text file into your PC

https://colab.research.google.com/drive/1pwN7NJPFga0WxMGof1D9uuPEKz4mHyk0?usp=sharing
https://drive.google.com/file/d/1OJDT0qUB3jEQMjlbtK8sao0HQ8Vn1lnF/view
https://drive.google.com/file/d/1_pbMfBQXJ5VkXsQ_1tRK4xvKV-edOWW9/view


Lab 8 - preview
An OpenAI and Pinecone account required 

If  you already have an OpenAI account, make sure that it has free trial 
credit 

 

Check it from: Personal -> Manage account -> Usage 

After creating an account, you need to create an API key from: 
Personal -> View API keys -> Create secret key 

Copy the secret key into a separate file on your PC 

https://openai.com
https://www.pinecone.io

