
How does ChatGPT work?

Li Chen
University of Louisiana at Lafayette

Representing words
Traditional NLP: regard words as discrete symbols

Such symbols can be represented as one-hot vectors:

motel = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]

hotel = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]

Vector dimension: the number of words in vocabulary (e.g., 500,000+)

Problem: For any two different words, their one-hot vectors are
orthogonal. There is no natural notion of similarity for one-hot vectors

How to encode similarity for words, so that we can, for example, match
documents containing "Lafayette hotel", if a user searches for "Lafayette
motel" in the web?

Word vectors (embeddings)

Distributional semantics: A word’s meaning is given by the words
that frequently appear close-by

When a word w appears in a text, its context is the set of words
that appear nearby (within a fixed-size window)

We use the many contexts of w to build up a representation of w

More specifically, we will build a dense vector for each word,
chosen/learned so that it is similar to vectors of words that
appear in similar contexts, measuring similarity as the vector dot
(scalar) product

Word2Vec (Mikolov
et al., 2013) by
Google

GloVe (Pennington et
al., 2014), Stanford

Learn numeric
representation of the
meanings of words

Word vectors (embeddings)

Word2Vec

Continuous Bag of Words model
Predict center word
from context words

Skip-gram model
Predict context words

from center word

Word2Vec encodes meaning into vectors,
but what if a word has different meaning

in different sentences?

The bank of the river
vs.

Money in the bank

Attention

generate word by word

Learns what words to attend to,
when generating each word

in theory, given enough compute resources

Transformer

Pretraining
Pretained word embeddings (2017) -> pretrained whole model

All (or almost all) parameters in NLP networks are initialized via pretraining

Pretraining methods hide parts of the input from the model, and train the model to
reconstruct those parts

Exceptionally effective at building strong representations of language, parameter
initializations for strong NLP models, and probability distributions over language that
we can sample from

Pretraining and finetuning
 Why should they help, from a “training neural networks” perspective?

Consider, provides parameters by approximating .
(The pretraining loss)

Then, finetuning approximates , starting at . (The
finetuning loss)

The pretraining may matter because stochastic gradient descent sticks
(relatively) close to during finetuning.

So, maybe the finetuning local minima near tend to generalize well

And/or, maybe the gradients of finetuning loss near propagate nicely

̂θ min
θ

Lpretrain(θ)

min
θ

Lfinetune(θ) ̂θ

̂θ

̂θ

̂θ

Recall: Notable LLMs

Pretraining for 3 types of architectures
The neural architecture influences the type of pretraining,
and natural use cases

Pretraining encoders
What pretraining objectives to use?

 Idea: replace some fraction of words in the input with a special [MASK] token; predict these words

BERT: Bidirectional Encoder Representations from Transformers, Devlin et al., 2018

Two objectives: Masked language modeling and Next sentence prediction

Trained on: BooksCorpus (800 million words), English Wikipedia (2,500 million words)

BERT-base: 12 layers, 768-dim hidden states, 12 attention heads, 110 million params

BERT-large: 24 layers, 1024-dim hidden states, 16 attention heads, 340 million params

Extensions of BERT
Some generally accepted improvements to the BERT pretraining formula:

RoBERTa (Liu et al., 2019): mainly just train BERT for longer and
remove next sentence prediction

SpanBERT (Joshi et al., 2020): masking contiguous spans of words
makes a harder, more useful pretraining task

Full vs. Parameter-Efficient Finetuning

Prefix-Tuning Low-Rank
Adaptation

Pretraining encoder-decoders
What pretraining objectives to use?

 Idea: replace different-length spans from the input with unique placeholders; decode out the spans that
were removed

Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer, Raffel et al., 2018

T5: Text-to-Text Transfer Transformer, 11 Billion parameters

Pertaining on Colossal Clean Crawled Corpus (C4): start with Common Crawl (over 50TB of
compressed data, 10B+ web pages), filtered down to ~800GB, or ~160B tokens

trained with a novel text infilling objective: randomly mask a portion of contiguous tokens and
train the model to predict the masked text spans

Pretraining objectiveText-to-text framework

Pretraining decoders
It’s natural to pretrain decoders as language models and then use them as generators

We can finetune them by training a classifier on the last word’s hidden state

Improving Language Understanding by Generative Pre-Training, Radford et al.,
2018

Transformer decoder with 12 layers, 117M parameters

768-dimensional hidden states, 3072-dimensional feed-forward hidden layers

Trained on BooksCorpus: over 7000 unique books

Contains long spans of contiguous text, for learning long-distance
dependencies

The acronym “GPT” never showed up in the original paper; it could stand for
“Generative PreTraining” or “Generative Pretrained Transformer”

Generative Pretrained Transformer (GPT)
How do we format inputs to our decoder for finetuning tasks?

Natural Language Inference: Label pairs of sentences as entailing/
contradictory/neutral

Here’s roughly how the input was formatted, as a sequence of tokens for the
decoder.

The linear classifier is applied to the representation of the [EXTRACT]
token.

GPT-2
GPT-2, 2019, a larger version (1.5B) of GPT trained on more data

Start to achieve strong zero-shot performance

GPT-3

GPT-3 (Brown et al. 2020)
further scaled the GPT-2 model
to 175 Billion (100 times larger
compared to the largest GPT-2
model), trained on 300B tokens
of text.

Before GPT-3, fine-tuning is the
default way of doing learning in
models like BERT/T5/GPT-2:

very expensive for the 175B
GPT-3 model

GPT-3 paradigm shift
GPT-3 proposes an alternative: In-context learning

Only need to feed a small number of examples (e.g., 32)

Just a forward pass, no gradient update at all

GPT-3’s in-context learning

The GPT Lineage

New after GPT-3:
Training on code, supervised instruction tuning, and RLHF

(reinforcement learning from human feedback)

ChatGPT

GPT-3.5 (Nov. 2022) -> GPT-4 (latest)

LMs to assistants
How do we get from language models

to this?

ChatGPT

InstructGPT
Supervised instruction tuning + RLHF

(Ouyang et al., 2022): Training language models to follow instructions with human feedback

Instruction finetuning

Instruction finetuning

Limitations
It’s expensive to collect ground-truth data for tasks.

Tasks like open-ended creative generation have no right answer.

E.g., write me a story about a dog and her pet grasshopper.

Language modeling penalizes all token-level mistakes equally, but
some errors are worse than others.

Even with instruction finetuning, there a mismatch between the LM
objective and the objective of “satisfy human preferences”.

Can we explicitly attempt to satisfy human preferences?

Reinforcement learning from human feedback!

InstructGPT
Supervised instruction tuning + RLHF

InstructGPT
Supervised instruction tuning + RLHF

ChatGPT: InstructGPT + dialogue data

https://openai.com/blog/chatgpt

https://openai.com/blog/chatgpt

Summary

Summary

Summary

Summary

Summary

RLHF Limitations
Collecting human feedback at scale is extremely expensive since
humans need to be paid

If humans are included, one must consider that the quality of the
human feedback that can highly influence the model performance

Chatbots are rewarded to produce responses that seem authoritative
and helpful, regardless of truth

This can result in making up facts + hallucinations

Human preferences are unreliable

 “Reward hacking” is a common problem in RL

What’s next?
RLHF is still a very underexplored and fast-moving area

Scalability: As the process relies on human feedback, developing methods to
automate or semi-automate the feedback process could help address this issue.

Ambiguity and subjectivity: Human feedback can be subjective and may
vary between trainers. This can lead to inconsistencies in the reward signals
and potentially impact model performance. Developing clearer guidelines and
consensus-building mechanisms for human trainers may help alleviate this
problem.

Long-term value alignment: Ensuring that AI systems remain aligned
with human values in the long term is a challenge that needs to be addressed.

…

Lab 8 - preview

Save a copy of this
Colab notebook file
into your google drive:
File -> Save a copy in
Drive

Work on the saved
copy

Download this pdf and
text file into your PC

https://colab.research.google.com/drive/1pwN7NJPFga0WxMGof1D9uuPEKz4mHyk0?usp=sharing
https://drive.google.com/file/d/1OJDT0qUB3jEQMjlbtK8sao0HQ8Vn1lnF/view
https://drive.google.com/file/d/1_pbMfBQXJ5VkXsQ_1tRK4xvKV-edOWW9/view

Lab 8 - preview
An OpenAI and Pinecone account required

If you already have an OpenAI account, make sure that it has free trial
credit

Check it from: Personal -> Manage account -> Usage

After creating an account, you need to create an API key from:
Personal -> View API keys -> Create secret key

Copy the secret key into a separate file on your PC

https://openai.com
https://www.pinecone.io

